Image Analysis

Tim B. Dyrby
Rasmus R. Paulsen
DTU Compute
tbdy@dtu.dk
http://www.compute.dtu.dk/courses/02502

Lecture 5 - Geometric Transformation and image registration

What can you do after today?

- Construct a translation, rotation, scaling, and shearing transformation matrix of a point
- Use transformation matrices to perform point transformations
- Describe the difference between forward and backward mapping
- Transform an image using backward mapping and bilinear interpolation
- Describe the image registration
- Describe the different types of landmarks

든 Annotate a set of image using anatomical landmarks

- Describe the objective function used for landmark and joint histogram based registration
- Compute the optimal translation between two sets of landmarks
- Use the rigid body transformation for image registration
- Describe the general "pipeline" for image registration

It's Nothing Personal.
TERMINATORE JUDGMENT DAY

From 1991

Go to www.menti.com and use the code 81796669 Quiz testing: What is it that the Terminator II movie is famous for?

1) Arnold Schwarzenegger
2) Fancy new robots
3) Computer graphics
4) Time travel

Geometric transformation

■ Moving and changing the dimensions of images

- Why do we need it?

Change detection

- Patient imaged before and after surgery
- What are the changes in the operated organ?
- Patient cannot be placed in the exact same position in the scanner

Before surgery

After surgery

Similarity transform

- Objects at different distances

Amano et al 2016, DOI: 10.1051/matecconf/20166600024

Image Registration

- Change one of the images so it fits with the other
- Formally
- Template image
- Reference image
- Template is moved to fit the reference

Geometric Transform

- The pixel intensities are not changed
- The "pixel values" just change positions

Different transformations

- Translation
- Rotation
- Scaling
- Shearing

- Advanced transformations

From Terminator 2 movie: Non-linear image transformation

Translation

- The image is shifted - both vertically and horizontally

$$
\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]=\left[\begin{array}{l}
60 \\
20
\end{array}\right]
$$

Rotation

- The image is rotated around the centre or the upper left corner
- Remember to use degrees and radians correctly
- Python uses radians
- Degrees easier for us humans

Rotation coordinate system

Rigid body transformation

- Translation and rotation
- Rigid body
- Angles and distances are kept

$$
\begin{gathered}
{\left[\begin{array}{c}
\Delta x \\
\Delta y
\end{array}\right]=\left[\begin{array}{l}
60 \\
20
\end{array}\right]} \\
\theta=5^{\circ}
\end{gathered}
$$

Scaling

- The size of the image is changed
- Scale factors
- X-scale factor S_{x}
- Y-scale factor S_{y}
- Uniform scaling: $\mathrm{S}_{\mathrm{x}}=\mathrm{S}_{\mathrm{y}}$

Similarity transformation

- Translation, and uniform scaling
- Angles are kept
- Distances change

Shearing

- Pixel shifted horizontally or/and vertically
- Shearing factors
- X-shear factor B_{x}
- Y-shear factor B_{y}
- Is less used than translation, rotation, and scaling

Transformation Mathematics

- Transformation of positions
- Structure found at position (x, y) in the input image f
- Now at position (x^{\prime}, y^{\prime}) in output image g
- A mapping function is needed

$$
\begin{aligned}
x^{\prime} & =A_{x}(x, y) \\
y^{\prime} & =A_{y}(\hat{x}, y) \\
& \text { Depends on both } \mathrm{x} \text { and } \mathrm{y}!
\end{aligned}
$$

Translation mathematics

- The image is shifted - both vertically and horizontally

$$
\begin{aligned}
x^{\prime} & =x+\Delta x \\
y^{\prime} & =y+\Delta y
\end{aligned}
$$

Matrix notation

- Coordinates in column matrix format

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Translation mathematics in matrix notation

- The image is shifted - both vertically and horizontally

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]
$$

Scaling

- The size of the image is changed
- Scale factors
- X-scale factor S_{x}
- Y-scale factor S_{y}

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
S_{x} & 0 \\
0 & S_{y}
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Uniform scaling: $\mathrm{S}_{\mathrm{x}}=\mathrm{S}_{\mathrm{y}}$

DTU Compute

Matrix multiplication details

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
S_{x} & 0 \\
0 & S_{y}
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Is equal to:

$$
\begin{aligned}
x^{\prime} & =x \cdot S_{x} \\
y^{\prime} & =y \cdot S_{y}
\end{aligned}
$$

Transformation matrix

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
S_{x} & 0 \\
0 & S_{y}
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Can be written as

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\mathbf{A} \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Where

$$
\mathbf{A}=\left[\begin{array}{cc}
S_{x} & 0 \\
0 & S_{y}
\end{array}\right]
$$

is a transformation matrix

Rotation

- A rotation matrix is used

- It is a counter-clockwise rotation: $-\sin (\theta)$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Shearing

- Pixel shifted horizontally or/and vertically

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & B_{x} \\
B_{Y} & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

New x value depends on x and y

Affine transformation

- The collinearity relation between points, i.e., three points which lie on a line continue to be collinear after the transformation

Combining transformations

Scaling $\quad S_{x}=S_{y}=1.10$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
S_{x} & 0 \\
0 & S_{y}
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Rotation $\quad \theta=5^{\circ}$
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right] \cdot\left[\begin{array}{l}x \\ y\end{array}\right]$

- Suppose you first want to rotate by 5 degrees and then scale by 10%

How do we combine the transformations?

Combining transformations

- Combination is done by matrix multiplication

Scaling

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
S_{x} & 0 \\
0 & S_{y}
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Rotation

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Combined $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}S_{x} & 0 \\ 0 & S_{y}\end{array}\right] \cdot\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right] \cdot\left[\begin{array}{l}x \\ y\end{array}\right]$

Combining transformations

- Compact notation

Scaling

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
S_{x} & 0 \\
0 & S_{y}
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]=\mathbf{A}_{S} \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Rotation

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]=\mathbf{A}_{R} \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Combined

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\mathbf{A}_{S} \cdot \mathbf{A}_{\boldsymbol{R}} \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Remember: The order of matrix multiplications matters!

Quiz 1: Combining transforms

The point $(x, y)=(5,6)$ is transformed. First with:

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]
$$

and then with:

$$
\left[\begin{array}{cc}
0.9239 & 0.3827 \tag{3}\\
-0.3827 & 0.9239
\end{array}\right]
$$

The result is:

2. $(2.35,20.46)$
3. $(11.3,1.21)$
4. $(-1.2,3.13)$
5. $(-30.8,24.21)$
$\left[\begin{array}{cc}0.9239 & 0.3827 \\ -0.3827 & 0.9239\end{array}\right]\left[\begin{array}{c}10 \\ 18\end{array}\right]=\left[\begin{array}{c}0.9239 * 10+0.3827 * 18) \\ -0.3827 * 10+0.9239 * 18)\end{array}\right]=\left[\begin{array}{c}16.12 \\ 12.8\end{array}\right]$

What do we have now?

- We can pick a position in the input image f and find it in the output image g

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\mathbf{A} \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

We can transfer one pixel what about the whole image?

Solution 1 : Input-to-output

- Run through all pixel in input image
- Find position in output image and set output pixel value

Scaling example $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}1.5 & 0 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}x \\ y\end{array}\right]$

Input-to-Output

- The input to output transform is not good!
- It creates holes and other nasty looking stuff
- What do we do now?

Some observations

- We want to fill all the pixels in the output image
- Not just the pixels that are "hit" by the pixels in the input image
- Run through all pixels in the output image?
- Pick the relevant pixels in the input image?

We need to go "backwards"
From the output to the input

Forward vs Backward mapping

- In a nutshell
- Going backward we need to invers the transformation

Template
Reference

Inverse transformation

\square We want to go from the output to the input
Scaling example $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}1.5 & 0 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}x \\ y\end{array}\right] \xrightarrow{\text { inverse }}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{cc}1 / 1.5 & 0 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]$

Output-to-input transformation

 Backward mapping- Run through all pixel in output image

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
1 / 1.5 & 0 \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]
$$

- Find position in input image and get the value

Bilinear Interpolation

Value?

DTU Compute

Linear Interpolation (1D)

$$
v=t b+(1-t) a
$$

a
b

Bilinear interpolation (2D)

$$
\begin{aligned}
g\left(x^{\prime}, y^{\prime}\right)= & f\left(x_{0}, y_{0}\right) \cdot(1-d x)(1-d y)+ \\
& f\left(x_{1}, y_{0}\right) \cdot(d x)(1-d y)+ \\
& f\left(x_{0}, y_{1}\right) \cdot(1-d x)(d y)+ \\
& f\left(x_{1}, y_{1}\right) \cdot(d x \cdot d y),
\end{aligned}
$$

Quiz 2: Bilinear interpolation

Solution:

Distance between grid points is 1
hence: $\mathrm{dx}=0.1$ and $\mathrm{dy}=0.8$
Do the interpolation (see previous slide) $g(173.1,57.8)=$
$110 *(1-0.1) *(1-0.8)+$
$140 *(0.1) *(1-0.8)+$
156*(1-0.1)*(0.8)+
101*(0.1)*(0.8)
$=143$
Bilinear interpolation is used to create a line profile from an image. In a given point $(x, y)=(173.1,57.8)$, the four nearest pixels are:

x	y	værdi
173	57	110
174	57	140
173	58	156
174	58	101

What is the interpolated value in the point:

1. 131

2. 128
3. 151
4. 139

Output-to-input transformation
Backward mapping

- Run through all the pixel in the output image
- Use the inverse transformation to find the position in the input image
- Use bilinear interpolation to calculate the value
- Put the value in the output image

Inverse transformation

Scaling

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1.5 & 0 \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- We can calculate the inverse transformation for the scaling
- What about the others?

Inverse

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
1 / 1.5 & 0 \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]
$$

General inverse transformation

Affine transformation

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\mathbf{A} \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- The transformation is expressed as a transformation matrix A
- The matrix inverse of A gives the inverse transformation

Inverse transformation

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\mathbf{A}^{-1} \cdot\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]
$$

Where

$$
\mathbf{A}^{-1} \cdot \mathbf{A}=\mathbf{I}
$$

Quiz 3: Transformation

The point $(x, y)=(45,23)$ is transformed using:

$$
\left[\begin{array}{cc}
0.5 & 2 \tag{1}\\
2 & 0.8
\end{array}\right]
$$

And the result is translated with $(-15,20)$. The result is:

Solution:
$\left(x^{\prime}, y^{\prime}\right)=\left[\begin{array}{c}-15 \\ 20\end{array}\right]+\left[\begin{array}{cc}0.5 & 2 \\ 2 & 0.8\end{array}\right]\left[\begin{array}{c}45 \\ 23\end{array}\right]$
$=\left[\begin{array}{c}-15 \\ 20\end{array}\right]+\left[\begin{array}{c}68.5 \\ 108.4\end{array}\right]$
$=\left[\begin{array}{c}53.5 \\ 128.4\end{array}\right]$

Image Registration

Image Registration

- The act of adjusting something to match a standard
- Align images

Image registration

- Monitoring of change in the individual
- Fusion of information from different sources in a meaningful way
- Comparison of one subject with others
- Comparison of groups with others
- Comparing with an atlas

Data fusion
Same patient - two scans

MR

CT

Change detection

- Patient image before and after operation
- What has changed?
- Images need to be aligned before comparison

Before operation

After operation

Reference and template image

- The reference image R
- Template image T
- Transform the template so it fits the reference
- Combine geometrical transformations
- Find the transformation matrix, A for the best match

The transformations

- Translation
- Rotation
- Scaling

Similarity measures

- The aim is to transform the template, so it looks like the reference
- Looks like = Similarity measure
- Image similarity
- Subtract the two images and see "what is left"

Landmark similarity

- Landmarks from the two images should be "close together"

Landmark Based Registration

- Landmarks placed on both reference and template image
- The landmark should have correspondence

Point correspondence

- Landmarks are numbered
- Each landmark should be placed the same place on both images

Landmark types

Anatomical landmark

- a mark assigned by an expert that corresponds between objects in a biologically meaningful way
- Mathematical landmark
- a mark that is located on a curve according to some mathematical or geometrical property
Pseudo landmark
- a mark that is constructed on a curve based on anatomical or mathematical landmarks

Landmarks $\quad a_{5}=(412,55)$

a_{i}
Reference image \mathbf{R}

Template image
T

The aim of registration

- We have selected Landmark points
\square Find a transformation that maps the coordinates of the reference to the coordinates of the template
- Why not the template to the reference?

Sampling the template image:
Backward mapping -> inverse transform

	Template		Referenc
	x	Backward mapping	x^{\prime}
		\mathbf{A}^{-1}	
	$f(x, y)$		$g\left(x^{\prime}, y^{\prime}\right)$

The Transformation

- Transforms point p
- Into point p^{\prime}
$\square \mathrm{T}$ is for example geometrical transformations eg. a
- Translation
- Rotation
- Rigid body transform
- Similarity transform

The Transformation

- Transforms points from the reference

$$
a_{i}^{\prime}=T\left(a_{i}\right)
$$

a_{i}

The parameters

$w \in R^{p}$
parameters

- The parameters is a vector with p elements
- The type of transformation determines the number of parameters
- Translation $p=2$
- Rotation $\mathrm{p}=1$
- Scaling $\mathrm{p}=1$

Quiz 4: Rigid body transform How many parameters?

$w \in R^{p}$

A) 1
B) 2
C) 3
D) 4
E) 5

Solution:

We have:

- Translation in x and y axis $p=2$
- Rotation $\mathrm{P}=1$

In total 3 parameters for rigid transformation

$$
w=(\Delta x, \Delta y, \theta)
$$

Objective function

$$
F=\sum_{i=1}^{N} L\left(T\left(a_{i}\right), b_{i}\right)^{2}
$$

- The objective function measures how well two point sets match
- It uses a cost function that describe how to evaluate the match
- Here the cost function is a sum-of-squares distance function
- Point sets could be landmarks

Points from the template image

Transformed points from the reference image

Objective function

$$
F=\sum_{i=1}^{N} D\left(T\left(a_{i}\right), b_{i}\right)^{2}
$$

- The objective function measures how well two point

Objective function

Minimization / Optimization

$$
F=\sum_{i=1}^{N} D\left(T\left(a_{i}\right), b_{i}\right)^{2}
$$

- Find the set of parameters that minimizes the objective function
- Optimisation strategy: Analytic (exact solution) vs Numerical?

$$
\widehat{w}=\arg \min _{w} F
$$

Minimization - pure translation

$$
\mathrm{F}=\mathrm{D}_{1}^{2}+\mathrm{D}_{2}^{2}+\mathrm{D}_{3}^{2}
$$

Minimization - pure translation $\mathrm{F}=\mathrm{D}_{1}^{2}+\mathrm{D}_{2}^{2}+\mathrm{D}_{3}^{2}$ Decreased!

Transformed reference

Minimization - pure translation

$$
\mathrm{F}=\mathrm{D}_{1}^{2}+\mathrm{D}_{2}^{2}+\mathrm{D}_{3}^{2} \text { Decreased! }
$$

Transformed reference

(A) 600
 B) 50
 C) 100
 D) 900
 E) 300

Solution:
$D 1^{2}=\left\|\left[\begin{array}{l}10 \\ 10\end{array}\right]-\left[\begin{array}{l}20 \\ 20\end{array}\right]\right\|^{2}=\left\|\begin{array}{l}10 \\ 10\end{array}\right\|^{2}=200$
$D 2^{2}=\left\|\left[\begin{array}{c}20 \\ 30\end{array}\right]-\left[\begin{array}{c}40 \\ 30\end{array}\right]\right\|^{2}=\left\|\begin{array}{c}20 \\ 0\end{array}\right\|^{2}=400$

Quiz 5: Objective

Translation

- Simple shift of coordinates

$$
\begin{aligned}
& \qquad T\binom{x}{y}=\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]=(x, y)+t \\
& \text { parameters } w=(\Delta x, \Delta y)
\end{aligned}
$$

Objective function for translation

Objective function

$$
F=\sum_{i=1}^{N} D\left(T\left(a_{i}\right), b_{i}\right)^{2}
$$

Translation

$$
a_{i}^{\prime}=a_{i}+t
$$

Objective function for translation

$$
F=\sum_{i=1}^{N}\left\|\left(a_{i}+t\right)-b_{i}\right\|^{2}
$$

Optimal function value

$$
F=\sum_{i=1}^{N} D\left(T\left(a_{i}\right), b_{i}\right)^{2}
$$

To find: $\quad \widehat{w}=\arg \min _{w} F$

We simply differentiate w.r.t. w:

$$
\frac{\partial F}{\partial w}=0
$$

Optimal translation

Objective function

$$
F=\sum_{i=1}^{N}\left\|\left(a_{i}+t\right)-b_{i}\right\|^{2}
$$

Parameters

$$
w=(\Delta x, \Delta y)=t
$$

$$
\hat{t}=\widehat{b}-\bar{a} \quad \bar{a}=\frac{1}{N} \sum_{i=1}^{N} a_{i}
$$

Average point $=$ centre of mass

Optimal translation

DTU Compute

Quiz 6:

Optimal translation

A) $(-10,10)$
B) $(20,5)$
C) $(20,-5)$
D) $(15,-5)$

Solution:

$$
\begin{gathered}
\hat{\boldsymbol{t}}=\overline{\boldsymbol{b}}-\bar{a} \\
\bar{a}=\frac{1}{4}\left(\left[\begin{array}{c}
10 \\
10
\end{array}\right]+\left[\begin{array}{l}
10 \\
40
\end{array}\right]+\left[\begin{array}{l}
20 \\
30
\end{array}\right]+\left[\begin{array}{l}
20 \\
10
\end{array}\right]\right)=\left[\begin{array}{c}
15 \\
22,5
\end{array}\right] \\
\bar{b}=\frac{1}{4}\left(\left[\begin{array}{c}
30 \\
10
\end{array}\right]+\left[\begin{array}{c}
30 \\
40
\end{array}\right]+\left[\begin{array}{l}
40 \\
20
\end{array}\right]+\left[\begin{array}{c}
40 \\
10
\end{array}\right]=\left[\begin{array}{c}
35 \\
17,5
\end{array}\right]\right.
\end{gathered}
$$

An expert has placed four landmarks in two images. The optimal translation that brings the landmarks from the reference image over in the landmarks from the template image. What is this translations?

Rigid body transformation

- Translation and rotation
- Rigid body
- Angles and distances are kept

$$
\begin{aligned}
& a_{i}^{\prime}=R a_{i}+t \\
& w=(\Delta x, \Delta y, \theta)
\end{aligned}
$$

$$
R=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Rigid body transformation

Transformation

$$
a_{i}^{\prime}=R a_{i}+t
$$

Rotation matrix

$$
R=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Objective function

$$
F=\sum_{i=1}^{N}\left\|\left(R a_{i}+t\right)-b_{i}\right\|^{2}
$$

Optimal rigid body transformation

- The minimum of the objective function can be found in several ways
- The rotation can be found analytically by singular value decomposition

Similarity measures

- Landmarks - time consuming to obtained
- Alternative: joint intensity histograms?

Joint intensity histograms

- Perfect registered: Optimal joint intensity agreement

Joint intensity histograms

- Small translation difference: Lower joint intensity agreement

Joint intensity histograms

- Objective function i.e. a similarity measure to find the optimal transformation
- Many methods exist but two types dominate:
- Cross-correlation based
\rightarrow Fast to estimate, not optimal choice if different image modalities
- Joint entropy based also known as Mutual Information (MI)
\rightarrow Slow to estimate, robust when image modalities are different

Similarity measure - Entropy

- A information content measure
- Entropy (Shannon-Weiner):

$$
H=-\sum_{i} p_{i} \log p_{i}
$$

Joint entropy - Mutual information

- Joint entropy $H=-\sum_{X, Y} p_{X, Y} \log p_{X, Y}$
- Similarity measure: The more similar the distributions, the lower the joint entropy compared to the sum of the individual entropies

$$
H(X, Y) \leq H(X)+H(Y)
$$

- Example (Pluim et al., 2003, TMI)

The image registration "pipeline"

- Register Template image to Reference image via geometrical transformations
- Select a similarity measure to map coordinates from template
- Objective function - Find optimal parameters: $\widehat{w}=\arg \min F$
- The solution is often found by numerical optimisation (optimizer)

... Or use existing methods !!

What did you learn today?

으응 Construct a translation, rotation, scaling, and shearing transformation matrix of a point

- Use transformation matrices to perform point transformations
- Describe the difference between forward and backward mapping
- Transform an image using backward mapping and bilinear interpolation
- Describe the image registration
- Describe the different types of landmarks

윾 - Annotate a set of image using anatomical landmarks

- Describe the objective function used for landmark and joint histogram based registration
- Compute the optimal translation between two sets of landmarks
- Use the rigid body transformation for image registration
- Describe the general "pipeline" for image registration

Next week:
Blob Analysis and object classification

